
April 2005 www.stsc.hill.af.mil 29

The Information Systems Develop-
ment Center within Sandia National

Laboratories began a journey with soft-
ware process improvement using the
Capability Maturity Model® for Software
as its improvement yardstick in 1999. The
Personal Software ProcessSM (PSPSM) and
Team Software ProcessSM were adopted
soon thereafter to improve the personal
and team practices of the software engi-
neers in the organization.

The rigorous and consistent collection
of measurement data prescribed as part
of the PSP (and in the examined classes)
provides a fertile environment for under-
standing how software size is estimated
versus its actual size upon completion.
More interesting though is the study of
the size of the software products devel-
oped by numerous classes and class atten-
dees for class projects using homogenous
and heterogeneous software languages.
Both casual heuristic analysis and statisti-
cal analysis of these sets of data raise seri-
ous suspicions regarding the reliability of
using lines of code (LOC) as a software
sizing measure.

Software Size Has No
Monopoly on Ambiguity
Parents deal with ambiguity when they ask
their teenagers when they will be home,
only to hear “pretty soon.” Spouses expe-
rience ambiguity when asking, “How long
until dinner?” only to hear, “In a minute.”
Most consumers at one time or another
have purchased jumbo shrimp. Science
describes distant galactic formations as
small supernovas. Meteorologists con-
tribute their share to ambiguity by using
phrases like partly cloudy, partly sunny, and
apparent synonyms like mostly sunny and
mostly cloudy, respectively.

The least satisfying of these descrip-
tions parallel software customers who are
told that their proposed software will be 5
million LOC. Anyone who has ever sus-
pected that the figure 5 million is neither
reliable nor accurate will more fully
understand some of that discomfort
upon completing this article. Anyone who

has provided similar numbers for project
sizes in the past may be reluctant to ever
do so again.

This article is not the first to raise
questions surrounding the use of LOC.
The Definition Checklist for Source
Statements Counts identifies 66 variations
in counting LOC to document, and as
many as eight more that are language-spe-
cific [1]. Capers Jones offers this insight
on LOC:

This term is highly ambiguous and
is used for many different count-

ing conventions. The most com-
mon variance concerns whether
physical lines of logical statements
comprise the basic elements of the
metrics. Note that for some mod-
ern programming languages that
use button controls, neither physi-
cal lines nor logical statements are
relevant. [2]

Why Substantial Data on
LOC Studies Is Lacking
For data to be exchanged across organiza-
tions for benchmarking and eventual
insights and learning, a standard defini-
tion of a line of code would need to be
accepted and applied to participating
groups. For an organization to apply data
from its own projects for process insight
and estimation, many factors need to be
identified to minimize the sources of vari-
ation that could easily render any glean-
ings virtually useless. A preferred practice
without a context is often a worst practice
in another case. Some of the limitations
of purported studies related to LOC suf-
fer from one or more of the following
challenges.
• Too few controlled studies. Many

studies of LOC are merely reflections
of the type of software, language, and
environment in which it was devel-
oped. But requirements rigor, design
constraints, and customer turnover
often contribute as sources of undoc-
umented variation in the development
of software size and duration.

• Too few controlled studies with
multiple instantiations of the same
set of specifications. Few organiza-
tions can afford to sponsor the repeat-
ed development of software code by
different software engineers for the

The Statistically Unreliable Nature
of Lines of Code

Joe Schofield
Sandia National Laboratories

For the past three decades, the ill-defined line of code has been used to describe the size of a software project and often used
as a basis for estimating schedule and resource needs. Concurrently, software projects are noted for cost and schedule over-
runs, and often, for poor quality. This article suggests that the venerable line of code measure is a major factor in poorly
scoped and managed projects because it is itself a vague, ambiguous, and unsuitable parameter for sizing software projects.
A series of Personal Software ProcessSM courses is the source of the data in this article. Because the requirements, instruc-
tor, and the lines-of-code counting-specification for these programs were the same, the 60 sets of nine programs offers an
extraordinary opportunity for comparing significant variation in software sizes for identical requirements. Given the varia-
tion, often greater than an order of magnitude for identical requirements, the use of lines of code as a reliable indicator of
software size is challenged.

Open Forum

“This article suggests
that using LOC as a
measure for actual

product delivery has such
wide variation as to
render the counts

practically useless in the
best case, harmful and
misleading in the worst

of cases.”

30 CROSSTALK The Journal of Defense Software Engineering April 2005

purpose of measuring variations in
the size of the software.

• Too few controlled studies with
multiple instantiations for different
languages. Few organizations can
afford to sponsor the repeated devel-
opment of software code using differ-
ent languages for the purpose of
measuring variations in the size of the
software.

• Inconsistent measurement ap-
proaches. Few organizations can
afford to sponsor the repeated devel-
opment of software code and then ana-
lyze the source of variation attributed
to how the software was measured.

Addressing the Preceding
Challenges
A PSP course provides an environment
that addresses the challenges related to
collecting software size measures in the
preceding section. Thus, the software
measures in the following six tables are
extracted from a series of PSP classes
taught by the same Software Engineering
Institute-certified PSP course instructor.
Each class required the attendee to write
nine software programs in a language of
their choosing – typically the language

with which the attendee was most profi-
cient. Each program had associated
requirements and acceptance criteria eval-
uated by the same instructor.

The data from the PSP course was
collected in a controlled environment
facilitating the close examination of 60
sets of nine software programs (60 stu-
dents wrote nine programs each). The
LOC for each program were counted
using the same counting techniques, a
point that is proven with the data from
the courses (discussed on page 31 and
Table 6 on page 32). One of the pro-
grams was itself a line-counting program,
thus its specification and review reduces
one significant source of variation in the
counts – the counting method. Reduced
variation in counting technique increases
the reliability in the numbers used. In
those PSP classes in which different lan-
guages were used, also present were dif-
ferent levels of education; all participants
had at least a bachelor’s degree, and about
one-half of the attendees had an
advanced degree.

Examining the Data
Tables 1-3 cluster the LOC counts for
PSP classes by programming language.

Using the same format, each table
includes columns for the course number
and attendee identifier, and the number of
LOC for each of the nine programs. The
bottom rows include analytic data deriv-
ing the minimum and maximum line
counts for that set of programs using the
same language, the percent of variation
between the minimum and maximum val-
ues, and the mean and standard deviation
of the LOC counts.

The shaded Percent Variation (the shad-
ed row in Table 1) for the first shaded cell
should be read as a variance of 264 per-
cent between the largest and the smallest
programs in this data grouping. Recall
that all of the values in each of the P1-P9
columns of this table are derived from
software programs written from the same
requirement set, validated by the same
instructor, using the same language, and
counted the same way. Note that a vari-
ance of 264 percent is probably not
acceptable in purchasing a home (the
same home, built to the same specifica-
tion, inspected by the same inspector, and
measured identically), a car, or most con-
sumer or industrial products or services.

A second set of data in Table 2
demonstrates increasing concern. The
data collected from this data set came
from one class where all the attendees
used the same language, but a different
language than in Table 1. Note that the
smallest percent variation with these pro-
grams is almost 400 percent and the
largest is more than 2,200 percent.
Imagine, for example, the variation on the
amount of gasoline received at the local
filling station varied between four and 22
times, or the accuracy on the fuel gauge in
an aircraft varied this much, or the num-
ber of donuts in a dozen, or the amount
of beef in your favorite hamburger.

A more troublesome question is,
“Which value does the project leader use
to make an estimate of the size and, even-
tually, the cost and resources associated
with software?” Are the traditional rea-
sons offered for runaway software proj-
ects likely to be as causal as the variations
in the size of the code that is developed?
Is requirements creep, requirements
churn, or team turnover likely to cause a
variation of 2,200 percent on a project? Is
almost everything we believe about esti-
mating and managing software projects
incorrect? How might the true unpre-
dictable size of software using LOC
change what we believe about productivi-
ty, defects, or reuse?

Lastly, Table 3 contains the values of
the third programming language used in
the PSP courses. The range of variance is

Open Forum

Course /
Attendee P1 P2 P3 P4 P5 P6 P7 P8 P9

2 / 5 193 137 48 102 107 207 118 67 134

1 / 2 77 163 168 123 134 164 238 178 135

3 / 1 73 37 36 95 101 138 51 66 181

3 / 2 74 97 143 153 279 146 176 80 305

3 / 4 114 71 108 80 219 189 142 95 163
Min. Value 73 37 36 80 101 138 51 66 134
Max. Value 193 163 168 153 279 207 238 178 305

264 441 467 191 276 150 467 270 228
Mean 106 101 101 111 168 169 145 97 184
Std. Dev.

51 50 58 28 78 29 69 47 71

Table 1: Lines of Code Counts for PSP Classes by Programming Language No. 1

Attendee
(same

course)
P1 P2 P3 P4 P5 P6 P7 P8 P9

1 221 128 103 227 186 306 155 61 283

2 35 143 114 13 110 63 113 84 85

3 113 106 36 34 53 51 54 61 125

4 90 38 51 61 134 99 43 58 126

5 117 311 271 289 142 122 190 383 219

6 131 179 56 150 202 185 155 118 144

7 184 30 15 30 61 116 69 43 147

8 73 96 102 197 64 158 85 87 126

9 64 63 36 169 56 23 99 73 83

10 101 116 108 49 66 103 71 51 73
Min. Value 35 30 15 13 53 23 43 43 73
Max. Value 221 311 271 289 202 306 190 383 283

631 1037 1807 2223 381 1330 442 891 388

65

Table 2: Lines of Code Counts for PSP Classes by Programming Language No. 2

Percent Variation

Percent
Variation
Mean
Std. Dev.

121 89 122 107 123 103 102 141113
56 81 73 97 56 81 49 101

Table 1: Lines of Code Counts for PSP Classes by Programming Language No. 1

Course /
Attendee P1 P2 P3 P4 P5 P6 P7 P8 P9

2 / 5 193 137 48 102 107 207 118 67 134

1 / 2 77 163 168 123 134 164 238 178 135

3 / 1 73 37 36 95 101 138 51 66 181

3 / 2 74 97 143 153 279 146 176 80 305

3 / 4 114 71 108 80 219 189 142 95 163
Min. Value 73 37 36 80 101 138 51 66 134
Max. Value 193 163 168 153 279 207 238 178 305

264 441 467 191 276 150 467 270 228
Mean 106 101 101 111 168 169 145 97 184
Std. Dev.

51 50 58 28 78 29 69 47 71

Table 1: Lines of Code Counts for PSP Classes by Programming Language No. 1

Attendee
(same

course)
P1 P2 P3 P4 P5 P6 P7 P8 P9

1 221 128 103 227 186 306 155 61 283

2 35 143 114 13 110 63 113 84 85

3 113 106 36 34 53 51 54 61 125

4 90 38 51 61 134 99 43 58 126

5 117 311 271 289 142 122 190 383 219

6 131 179 56 150 202 185 155 118 144

7 184 30 15 30 61 116 69 43 147

8 73 96 102 197 64 158 85 87 126

9 64 63 36 169 56 23 99 73 83

10 101 116 108 49 66 103 71 51 73
Min. Value 35 30 15 13 53 23 43 43 73
Max. Value 221 311 271 289 202 306 190 383 283

631 1037 1807 2223 381 1330 442 891 388

65

Table 2: Lines of Code Counts for PSP Classes by Programming Language No. 2

Percent Variation

Percent
Variation
Mean
Std. Dev.

121 89 122 107 123 103 102 141113
56 81 73 97 56 81 49 101

Table 2: Lines of Code Counts for PSP Classes by Programming Language No. 2

April 2005 www.stsc.hill.af.mil 31

The Statistically Unreliable Nature of Lines of Code

between 252 percent and almost 1,800
percent. The comments that introduce
Table 1 (under the subhead Examining the
Data) and the questions that are triggered
by analyzing Table 2 apply here as well.

Caution: Quick Fixes Create
Other Unanticipated Effects
Attempts to quick fix (or pursue the low
hanging fruit) of the measured variation by
eliminating the weakest link on the proj-
ect – the software engineer who writes the
most unneeded code – is unlikely to pro-
duce the desired results. While such an
approach may seem fruitful based on an
initial review of the tables above, consid-
er the following data in Table 4 taken
from a class where all attendees used the
same language.

In the following example, attendee
No. 3 had four of the largest of nine pos-
sible programs. (These larger-sized pro-
grams are shown in italic, bold typeface.)
But attendee No. 3 also had the shortest
program, Program 7. (Shortest programs
are shaded in cells that have attendee
identifiers.) Four other attendees (Nos. 1,
2, 6, and 8) also had the largest program
to their credit, while six others (Nos. 1, 2,
5, 6, 7, and 8) had the shortest program.

Please note that overall, attendee Nos.
1, 2, 3, 6, and 8 had both at least one
largest and at least one smallest program.
The weakest link depends on more than
merely who writes the largest program.
The weakest link also depends on the pro-
gram that is selected.

Another erroneous argument could be
made for the removal (removal may be a
little harsh, maybe retrain, reassign, or pro-
mote) of attendee No. 3 based on the
largest number of most lengthy pro-
grams. However, the total number of
LOC written for the nine programs was
higher for attendee Nos. 1, 2, and 4 than
for attendee No. 3. The answer to the
question of the weakest link becomes less
obvious as different quantitative perspec-
tives are considered.

Further examination of the programs
from five classes all written with the same
language reveals a significant overlap
among software engineers that write both
shorter and longer programs (see Table
5). The potential for different software
engineers to write programs on both
ends of the length spectrum suggests
that sometimes the apparently more effi-
cient programmer turns out to be the
least efficient, and sometimes the appar-
ently least efficient programmer turns out
to be the most (judging efficiency by
length since each program met the same

stated requirements).
Variation then should be attributed to

context, which includes both the problem
space and the engineer’s ability to recog-
nize and utilize strengths and features of
the software environment to narrow the
solution space.

Another source of variance usually
attributed to the differences in size of
LOC is the process for counting the
LOC. In one study shared by Capers
Jones, one-third of the participants
counted comment lines as a LOC, one-
third did not count comment lines, and

one-third could not determine if com-
ment lines were included or excluded. As
mentioned previously, the attendees of
these PSP classes wrote a program that
counted LOC. To determine the effects
of how each programmer counted their
own source sizes, willing attendees shared
their line-counting software and their pro-
grams so that they could be counted by
each others’ software.

Each of the line counts in Table 6 (see
next page) was calculated from the LOC
counting program written by four atten-
dees. The values correspond as follows:

Course /
Attendee P1 P2 P3 P4 P5 P6 P7 P8 P9

1 / 1 89 34 67 40 102 235 23 38 168

1 / 3 82 23 33 48 61 34 33 27 52

1 / 4 177 119 67 85 136 276 165 112 233

1 / 5 76 48 305 244 61 121 66 77 127

1 / 7 46 33 17 37 60 95 129 46 186

3 / 5 22 40 100 58 68 131 58 58 102

3 / 6 46 20 30 42 73 82 51 72 82

2 / 7 95 155 147 94 54 191 174 102 218

Min. Value 22 20 17 37 54 34 23 27 52
Max. Value 177 155 305 244 136 276 174 112 233
Percent
Variation 805 775 1794 659 252 812 757 415 448

Mean 79 59 96 81 77 146 87 67 146
Std. Dev. 47 50 95 69 28 82 60 30 66

Table 1: Lines of Code Counts for PSP Classes by Programming Language No. 3

Attendee P1 P2 P3 P4 P5 P6 P7 P8 P9
1 33 40 30 108 65 176 79 107 284
2 51 52 24 72 109 166 87 145 270
3 76 56 30 115 175 158 27 104 128
4 60 52 31 108 94 155 72 94 235
5 22 51 25 50 75 105 47 21 102
6 65 27 80 45 95 141 91 60 209
7 22 51 25 50 75 105 47 21 102
8 65 27 80 45 95 141 91 60 209

Min. Value 22 27 24 45 65 105 27 21 102
Max. Value 76 56 80 115 175 176 91 145 284
Percent
Variation 345 207 333 256 269 168 337 690 278

Mean 49 45 41 74 98 143 68 77 192
Std. Dev. 21 12 24 31 34 26 24 44 73

Table 2: Example of Attendees With Largest and Smallest Programs

Class
Number of
attendees

Number of
attendees
with the
smallest

and largest
program

1
2
3
4

10
8
13

5 10
8

3
5
7
5
5

6
4
6
6
4

0
2
2
5
1

Number of
attendees with

smallest program

Number of
attendees with

largest program

Table 3: Lines of Code Counts for PSP Classes by Programming Language No. 3Course /
Attendee P1 P2 P3 P4 P5 P6 P7 P8 P9

1 / 1 89 34 67 40 102 235 23 38 168

1 / 3 82 23 33 48 61 34 33 27 52

1 / 4 177 119 67 85 136 276 165 112 233

1 / 5 76 48 305 244 61 121 66 77 127

1 / 7 46 33 17 37 60 95 129 46 186

3 / 5 22 40 100 58 68 131 58 58 102

3 / 6 46 20 30 42 73 82 51 72 82

2 / 7 95 155 147 94 54 191 174 102 218

Min. Value 22 20 17 37 54 34 23 27 52
Max. Value 177 155 305 244 136 276 174 112 233
Percent
Variation 805 775 1794 659 252 812 757 415 448

Mean 79 59 96 81 77 146 87 67 146
Std. Dev. 47 50 95 69 28 82 60 30 66

Table 1: Lines of Code Counts for PSP Classes by Programming Language No. 3

Attendee P1 P2 P3 P4 P5 P6 P7 P8 P9
1 33 40 30 108 65 176 79 107 284
2 51 52 24 72 109 166 87 145 270
3 76 56 30 115 175 158 27 104 128
4 60 52 31 108 94 155 72 94 235
5 22 51 25 50 75 105 47 21 102
6 65 27 80 45 95 141 91 60 209
7 22 51 25 50 75 105 47 21 102
8 65 27 80 45 95 141 91 60 209

Min. Value 22 27 24 45 65 105 27 21 102
Max. Value 76 56 80 115 175 176 91 145 284
Percent
Variation 345 207 333 256 269 168 337 690 278

Mean 49 45 41 74 98 143 68 77 192
Std. Dev. 21 12 24 31 34 26 24 44 73

Table 2: Example of Attendees With Largest and Smallest Programs

Class
Number of
attendees

Number of
attendees
with the
smallest

and largest
program

1
2
3
4

10
8

13

5 10
8

3
5
7
5
5

6
4
6
6
4

0
2
2
5
1

Number of
attendees with

smallest program

Number of
attendees with

largest program

Table 4: Example of Attendees With Largest and Smallest Programs

Course /
Attendee P1 P2 P3 P4 P5 P6 P7 P8 P9

1 / 1 89 34 67 40 102 235 23 38 168

1 / 3 82 23 33 48 61 34 33 27 52

1 / 4 177 119 67 85 136 276 165 112 233

1 / 5 76 48 305 244 61 121 66 77 127

1 / 7 46 33 17 37 60 95 129 46 186

3 / 5 22 40 100 58 68 131 58 58 102

3 / 6 46 20 30 42 73 82 51 72 82

2 / 7 95 155 147 94 54 191 174 102 218

Min. Value 22 20 17 37 54 34 23 27 52
Max. Value 177 155 305 244 136 276 174 112 233
Percent
Variation 805 775 1794 659 252 812 757 415 448

Mean 79 59 96 81 77 146 87 67 146
Std. Dev. 47 50 95 69 28 82 60 30 66

Table 1: Lines of Code Counts for PSP Classes by Programming Language No. 3

Attendee P1 P2 P3 P4 P5 P6 P7 P8 P9
1 33 40 30 108 65 176 79 107
2 51 52 24 72 109 166 87 145 2
3 76 56 30 115 175 158 27 104 128
4 60 52 31 108 94 155 72 94 235
5 22 51 25 50 75 105 47 21 102
6 65 27 80 45 95 141 91 60 209
7 22 51 25 50 75 105 47 21 102
8 65 27 80 45 95 141 91 60 209

Min. Value 22 27 24 45 65 105 27 21 102
Max. Value 76 56 80 115 175 176 91 145 284
Percent
Variation 345 207 333 256 269 168 337 690 278

Mean 49 45 41 74 98 143 68 77 192
Std. Dev. 21 12 24 31 34 26 24 44 73

Table 2: Example of Attendees With Largest and Smallest Programs

Class
Number of
attendees

Number of
attendees
with the
smallest

and largest
program

1
2
3
4

10
8
13

5 10
8

3
5
7
5
5

6
4
6
6
4

0
2
2
5
1

Number of
attendees with

smallest program

Number of
attendees with

largest program

Table 5: Example of Attendees with Most Lengthy and Shortest Programs

Open Forum

32 CROSSTALK The Journal of Defense Software Engineering April 2005

Attendee No. 1 submitted the values for
counting method No. 1, attendee No. 2
submitted the values for counting method
No. 2, attendee No. 4 submitted the val-
ues for counting method No. 3, and
attendee No. 5 submitted the values for
counting method No. 4.

For the numbers used in Tables 1-5,
please note that in every case, each
attendee’s submitted LOC values were
consistent with the counts provided by
others who counted their codes (the shad-
ed rows). While attendee No. 2’s software
seems to overstate the value of attendee
No. 5’s sizes, these values were not sub-
mitted or included in the numbers used in
Tables 1-5. Only the shaded rows below
are used in Tables 1-5; that is, only counts
submitted by their author are used in the
first five tables.

The numbers in Table 6 demonstrate
that variation in counting approaches is not a
source of the data variation in this study
because other attendees also counted the
subject programs to be of very similar
size. Nor did attendees inflate or deflate
their own line-count totals, as evidenced
by the counts.

Statistical Significance
The apparent differences in the data pro-
voke questions around the statistical rele-
vance of the data. A staff statistician was
asked to independently review the data for
statistical significance. After conducting a
Box-Cox transformation on the data, and
performing an analysis of variance, there
was a 95 percent probability that the true
number of line counts for an individual
program from the given population was
between 23 and 240 lines. And finally, as is
often the case with count data and Poisson
distributions, examined variability in-

creased along with size of program.
What is the relevance of the statistical

significance? Clearly a 95 percent proba-
bility of values that have a range of
greater than 10 confirms earlier suspi-
cions that estimating the number of LOC
for a given problem is itself highly prob-
lematic. While the data in Tables 1-5 evi-
dence this likelihood, the statistical analy-
sis confirms it. A reasonable person, for
example, would not procure a computer

with such a potential order-of-magnitude
variance in performance, cost, or delivery.
But unpredictability and variation is the
tolerated norm in constructing software.

This norm is evidenced by project
performance and by somewhat misdirect-
ed attempts at lessons learned and root-
cause analyses to identify performance

improvements for the future, all dealing
with what is likely the wrong problem!
The problem itself is often further
masked in undocumented overtime and
costs, scope containment or reduction,
and attempted refinements in estimation
variables.

Rebuttals Refuted
The data in this article was presented in
similar form at conferences and profes-
sional meetings. Not too surprisingly,
some attendees are quick to defend the
widely used LOC for estimating and siz-
ing. Some attendees have doubts that the
data applies to their own organization.
Despite the rebuttals, each opinion seems
to be characterized by one common
attribute: no supporting data. The follow-
ing are some of the most frequently
expressed thoughts.

The PSP class is not a good forum
for conducting research.
Response: Rarely does an environment
exist that controls the requirements and
the validation of requirements through
the same control gate (instructor). Rarely are
organizations afforded the opportunity to
write the same software 60 times. Rarely
are the same programs written in the
same language by different authors for
comparison. Rarely are the same pro-
grams written in different languages for
comparison. Rarely are software pro-
grams counted using the same counting
requirements. And rarely are software
programs counted (and cross-counted) by
software. Because this analysis was con-
ceived and conducted after the classes
were conducted, the participants and
instructor were unaware that analysis was
forthcoming; they themselves were
unable to introduce bias into the analysis.
Finding a better environment for con-
ducting LOC sizing is difficult to imagine.

Statistically, the differences between
estimates and actual performance
average out over time (aka bigger
software programs will average out
over time).
Response: Apply this principle in other
life examples: The buyer of a car with 10
to 15 times the number of typical defects
is hardly consoled by the fact that the next
buyer may get a vehicle with 10 to 15
times fewer defects than normal. New
homeowners will not be comforted that
their 2,000-square-foot home was deliv-
ered at 100 square feet merely because the
purchaser that preceded them received a
25,000-square-foot home; after all, it is
merely the luck of the draw. Statistically

Counting
Method Attendee P1 P2 P3 P4 P5 P6 P7 P8 P9
1 1 91 123 45 121 101 403 553 211 516
1 2 74 97 218 194 279 406 311 181 368
1 4 108 95 205 162 300 484 499 143 706
1 5 193 137 182 229 127 353 353 112 510
2 1 93 133 51 123 107 441 580 213 580
2 2 74 97 218 194 279 406 310 181 368
2 4 110 98 218 317 219 513 523 148 706
2 5 256 172 229 310 170 675 445 122 649
3 1 91 123 45 119 108 380 516 202 479
3 2 74 96 217 194 279 406 310 181 368
3 4 114 78 187 149 303 440 462 130 619
3 5 193 137 181 219 127 517 353 112 510
4 1 91 124 45 120 108 399 548 210 511
4 2 75 98 221 197 282 408 312 182 375
4 4 109 92 202 160 295 476 492 141 672
4 5 193 137 182 209 127 517 353 112 510

Table 2: Example From Attendees Line-of-Code Counting Program

Table 6: Example From Attendees LOC Counting Program

“Because this analysis
was conceived and
conducted after the

classes were conducted,
the participants and

instructor were unaware
that analysis was
forthcoming; they

themselves were unable
to introduce bias

into the analysis.”

The Statistically Unreliable Nature of Lines of Code

April 2005 www.stsc.hill.af.mil 33

the buyers got what they ordered.
A related lesson taught in the PSP

course is that granular estimates are more
accurate than those developed at a higher
level because the error range is significantly
smaller. For instance, to estimate the time
required to build an application applying
the error range for the parts (modules,
programs, etc.) will provide a more accu-
rate estimate (under similar conditions of
knowledge and practice) than an estimate
of the application as a whole. This princi-
ple, for example, holds true for estimating
the size or cost of the rooms of a house,
which is a smaller error range than for
estimating the house as a whole unit; or
for reading the chapters of a book versus
reading the book as a whole.

Further, variations in granular esti-
mates tend to offset each other, resulting
in an estimate that is closer to actual per-
formance when summed than merely an
overall estimate of the time needed to
complete the effort. However, a differ-
ence exists between the smoothing of
variation in estimates for a more accurate
estimate and the belief that variations in
performance (actual) will nullify each
other over time. Please note that this
lines-of-code analysis was based on actual
size variations for the same product; com-
parisons to estimates were not the subject
of this study.

What estimating problem? I’m fine.
Response: This reaction is classic denial
when one or more of the following symp-
toms also exists: project teams that use
heroics to complete and deliver a project
on time, project teams that use unrecorded
overtime to maintain schedule, project
teams that use unrecorded resources to
complete tasks, projects that are usually
late, project teams (not customers) that
attempt to renegotiate scope when other
project management constraints remain
constant, and project deliverables that have
unpredictable defects rates compared to
projects that predict and manage defects.
Admittedly, poor estimating is not the sole
source of project delays; team turnover,
poor risk management, and true scope
changes are additional sources.

The programs’ sizes from the course
are obviously too small to represent
the real world.
Response: Before the introduction of
modular programming decades ago, this
argument might have had more validity.
However, the trend toward modulariza-
tion, objects, reuse, and architecture-
based components challenges the notion
that the programs from the PSP course

are not in some way representative of
much of the software developed today.
Certainly the number of LOC that can be
peer reviewed in a reasonable two-hour
session exceed those represented by many
of the programs in the numbers in this
study (200 LOC per hour and assuming a
two-hour peer review [3]).

Here is what I think …
Response: The information in this analy-
sis is often received with shock, some-
times relief, and sometimes anger. Many
who will read this article are likely to say,
“Well here’s what I think,” followed by a
statement that reflects the world accord-
ing to the lenses through which they
choose to see reality. In this discussion,
more than 60 sets of data were reviewed
and more than 500 LOC counts. An ap-
propriate response to doubters is, “Show
me your data.” The availability of similar
data (same requirements, same environ-
ment, similar knowledge-base of partici-
pants, no inflation/deflation bias intro-
duced because attendees did not know the
study would be conducted, same counting
techniques, same instructor/exit criteria,
and multiple instantiations of the same
requirements set) is quite limited.

Do Not Miss the Point
The PSP course provides a rich observa-
tory for gathering data about software
productivity. The course itself teaches the
student needed principles for estimating,
reviewing, defect removal and analysis,
scripting, and process improvement.
While the PSP course is the source of the
data used in this study, this data does not
suggest that PSP is the source of the vari-
ation in that data; if anything, the prac-
tices from the PSP narrow the variations
in lines-of-code counts.

This article suggests that using LOC as a
measure for actual product delivery has such wide
variation as to render the counts practically use-
less in the best case, harmful and misleading in
the worst of cases.

To record lines-of-code data for estima-
tion and calibration of productivity meas-
ures seems troubling based on the data.

Conclusion
The purpose of this article is clear:
Statistically significant variation in LOC
counts render those counts undesirable
for estimating and planning, and decep-
tive as an accurate portrayer of product
size. To those left pondering, “What is a
better approach for measuring software
size?” despite criticisms, function point
analysis, endorsed by International
Organization for Standardization/

International Electrotechnical Commis-
sion 20926:2003, is used by thousands of
companies worldwide to measure soft-
ware size. However, function point analy-
sis has its critics as well.

Further understanding of software
size for repeatable and quantifiable sizing
to improve estimation and project pre-
dictability is still needed. The improved
collection and use of software size meas-
ures will enhance the credibility of soft-
ware engineers who are plagued with vari-
ation in project cost and schedule.u

Acknowledgement
I gratefully acknowledge the statistical
analysis conducted by Laura Halbleib, a
technical staff statistician at Sandia
National Laboratories, Albuquerque,
N.M. Halbleib’s contribution validated the
intuitive inferences of the analysis by
applying rigorous statistical methods. Her
insights and knowledge increased the reli-
ability and usefulness of this material.

References
1. Boehm, B. Software Cost Estimation

with COCOMO II. Prentice Hall
PTR, 2000: 77-81.

2. Jones, C. Software Quality. Inter-
national Thomson Computer Press,
1997: 333.

3. Humphrey, W. Introduction to the
Team Software Process. Addison-
Wesley. Dec. 1999.

About the Author

Joe Schofield is a techni-
cal staff member at
Sandia National Labora-
tories. He chairs the
organization’s Software
Engineering Process

Group, is the Software Quality
Assurance Group leader, and is account-
able for introducing Personal Software
ProcessSM and Team Software ProcessSM

at Sandia. He has dozens of publications
and conference presentations. Schofield
is active in the local Software Process
Improvement Network and has taught
graduate-level software engineering
classes since 1990.

Sandia National Laboratories
MS 0661
Albuquerque, NM 87185
Phone (505) 844-7977
Fax: (505) 844 2018
E-mail: jrschof@sandia.gov

